The petunia MADS box gene FBP11 determines ovule identity.
نویسندگان
چکیده
منابع مشابه
The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.
Genes that control ovule identity were first identified in Petunia. Co-suppression of both FLORAL BINDING PROTEIN 7 (FBP7) and FBP11, two D-lineage genes, resulted in the homeotic transformation of ovules into carpelloid structures. Later in Arabidopsis it was shown that three genes, SHATTERPROOF1 (SHP1), SHP2, and SEEDSTICK (STK), redundantly control ovule identity, because in the stk shp1 shp...
متن کاملA novel class of MADS box genes is involved in ovule development in petunia.
We isolated and characterized two ovule-specific MADS box cDNAs from petunia, designated floral binding protein (fbp) genes 7 and 11. The putative protein products of these genes have approximately 90% of their overall amino acid sequence in common. In situ RNA hybridization experiments revealed that both genes are expressed in the center of the developing gynoecium before ovule primordia are v...
متن کاملA Nove1 Class of MADS Box Genes 1s lnvolved in Ovule Development in Petunia
We isolated and characterized two ovule-specific MADS box cDNAs from petunia, designated floral binding protein (fbp) genes 7 and 11. The putative protein products of these genes have -90% of their overall amino acid sequence in common. In situ RNA hybridization experiments revealed that both genes are expressed in the center of the developing gynoecium before ovule primordia are visible. At la...
متن کاملRedefining C and D in the petunia ABC.
According to the ABC(DE) model for flower development, C-genes are required for stamen and carpel development and floral determinacy, and D-genes were proposed to play a unique role in ovule development. Both C- and D-genes belong to the AGAMOUS (AG) subfamily of MADS box transcription factors. We show that the petunia (Petunia hybrida) C-clade genes PETUNIA MADS BOX GENE3 and FLORAL BINDING PR...
متن کاملThe cDNA sequence of two MADS box proteins in Petunia.
Severa1 homeotic genes that are involved in floral differentiation have recently been isolated and characterized from Antirrhinum majus and Arabidopsis thaliana (Sommer et al., 1990; Yanofsky et al., 1990). Based on genetic and molecular studies, a model has been proposed to explain the roles of different homeotic genes in the specification of floral organ identity (Bowman et al., 1991). To see...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Plant Cell
سال: 1995
ISSN: 1040-4651,1532-298X
DOI: 10.1105/tpc.7.11.1859